Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38397794

RESUMO

Ferroptosis is an iron-dependent cell death pathway that involves the depletion of intracellular glutathione (GSH) levels and iron-mediated lipid peroxidation. Ferroptosis is experimentally caused by the inhibition of the cystine/glutamate antiporter xCT, which depletes cells of GSH, or by inhibition of glutathione peroxidase 4 (GPx4), a key regulator of lipid peroxidation. The events that occur between GPx4 inhibition and the execution of ferroptotic cell death are currently a matter of active research. Previous work has shown that calcium release from the endoplasmic reticulum (ER) mediated by ryanodine receptor (RyR) channels contributes to ferroptosis-induced cell death in primary hippocampal neurons. Here, we used SH-SY5Y neuroblastoma cells, which do not express RyR channels, to test if calcium release mediated by the inositol 1,4,5-trisphosphate receptor (IP3R) channel plays a role in this process. We show that treatment with RAS Selective Lethal Compound 3 (RSL3), a GPx4 inhibitor, enhanced reactive oxygen species (ROS) generation, increased cytoplasmic and mitochondrial calcium levels, increased lipid peroxidation, and caused cell death. The RSL3-induced calcium signals were inhibited by Xestospongin B, a specific inhibitor of the ER-resident IP3R calcium channel, by decreasing IP3R levels with carbachol and by IP3R1 knockdown, which also prevented the changes in cell morphology toward roundness induced by RSL3. Intracellular calcium chelation by incubation with BAPTA-AM inhibited RSL3-induced calcium signals, which were not affected by extracellular calcium depletion. We propose that GPx4 inhibition activates IP3R-mediated calcium release in SH-SY5Y cells, leading to increased cytoplasmic and mitochondrial calcium levels, which, in turn, stimulate ROS production and induce lipid peroxidation and cell death in a noxious positive feedback cycle.

2.
Antioxidants (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38001825

RESUMO

Hippocampal neuronal activity generates dendritic and somatic Ca2+ signals, which, depending on stimulus intensity, rapidly propagate to the nucleus and induce the expression of transcription factors and genes with crucial roles in cognitive functions. Soluble amyloid-beta oligomers (AßOs), the main synaptotoxins engaged in the pathogenesis of Alzheimer's disease, generate aberrant Ca2+ signals in primary hippocampal neurons, increase their oxidative tone and disrupt structural plasticity. Here, we explored the effects of sub-lethal AßOs concentrations on activity-generated nuclear Ca2+ signals and on the Ca2+-dependent expression of neuroprotective genes. To induce neuronal activity, neuron-enriched primary hippocampal cultures were treated with the GABAA receptor blocker gabazine (GBZ), and nuclear Ca2+ signals were measured in AßOs-treated or control neurons transfected with a genetically encoded nuclear Ca2+ sensor. Incubation (6 h) with AßOs significantly reduced the nuclear Ca2+ signals and the enhanced phosphorylation of cyclic AMP response element-binding protein (CREB) induced by GBZ. Likewise, incubation (6 h) with AßOs significantly reduced the GBZ-induced increases in the mRNA levels of neuronal Per-Arnt-Sim domain protein 4 (Npas4), brain-derived neurotrophic factor (BDNF), ryanodine receptor type-2 (RyR2), and the antioxidant enzyme NADPH-quinone oxidoreductase (Nqo1). Based on these findings we propose that AßOs, by inhibiting the generation of activity-induced nuclear Ca2+ signals, disrupt key neuroprotective gene expression pathways required for hippocampal-dependent learning and memory processes.

3.
Antioxidants (Basel) ; 12(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36978954

RESUMO

Ferroptosis, a newly described form of regulated cell death, is characterized by the iron-dependent accumulation of lipid peroxides, glutathione depletion, mitochondrial alterations, and enhanced lipoxygenase activity. Inhibition of glutathione peroxidase 4 (GPX4), a key intracellular antioxidant regulator, promotes ferroptosis in different cell types. Scant information is available on GPX4-induced ferroptosis in hippocampal neurons. Moreover, the role of calcium (Ca2+) signaling in ferroptosis remains elusive. Here, we report that RSL3, a selective inhibitor of GPX4, caused dendritic damage, lipid peroxidation, and induced cell death in rat primary hippocampal neurons. Previous incubation with the ferroptosis inhibitors deferoxamine or ferrostatin-1 reduced these effects. Likewise, preincubation with micromolar concentrations of ryanodine, which prevent Ca2+ release mediated by Ryanodine Receptor (RyR) channels, partially protected against RSL3-induced cell death. Incubation with RSL3 for 24 h suppressed the cytoplasmic Ca2+ concentration increase induced by the RyR agonist caffeine or by the SERCA inhibitor thapsigargin and reduced hippocampal RyR2 protein content. The present results add to the current understanding of ferroptosis-induced neuronal cell death in the hippocampus and provide new information both on the role of RyR-mediated Ca2+ signals on this process and on the effects of GPX4 inhibition on endoplasmic reticulum calcium content.

4.
Int Ophthalmol ; 43(1): 343-356, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35781599

RESUMO

Glaucoma is a multifactorial neurodegenerative disease of the optic nerve currently considered a severe health problem because of its high prevalence, being the primary cause of irreversible blindness worldwide. The most common type corresponds to Primary Open-Angle Glaucoma. Glaucoma produces, among other alterations, a progressive loss of retinal ganglion cells (RGC) and its axons which are the key contributors to generate action potentials that reach the visual cortex to create the visual image. Glaucoma is characterized by Visual Field loss whose main feature is to be painless and therefore makes early detection difficult, causing a late diagnosis and a delayed treatment indication that slows down its progression. Intrinsically photosensitive retinal ganglion cells, which represent a subgroup of RGCs are characterized by their response to short-wave light stimulation close to 480 nm, their non-visual function, and their role in the generation of the pupillary reflex. Currently, the sensitivity of clinical examinations correlates to RGC damage; however, the need for an early damage biomarker is still relevant. It is an urgent task to create new diagnostic approaches to detect an early stage of glaucoma in a prompt, quick, and economical manner. We summarize the pathology of glaucoma and its current clinical detection methods, and we suggest evaluating the pupillary response to chromatic light as a potential biomarker of disease, due to its diagnostic benefit and its cost-effectiveness in clinical practice in order to reduce irreversible damage caused by glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Doenças Neurodegenerativas , Humanos , Glaucoma/diagnóstico , Glaucoma/patologia , Reflexo Pupilar/fisiologia , Testes de Campo Visual/métodos
5.
Free Radic Biol Med ; 175: 28-41, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461261

RESUMO

Iron, through its participation in oxidation/reduction processes, is essential for the physiological function of biological systems. In the brain, iron is involved in the development of normal cognitive functions, and its lack during development causes irreversible cognitive damage. Yet, deregulation of iron homeostasis provokes neuronal damage and death. Ferroptosis, a newly described iron-dependent cell death pathway, differs at the morphological, biochemical, and genetic levels from other cell death types. Ferroptosis is characterized by iron-mediated lipid peroxidation, depletion of the endogenous antioxidant glutathione and altered mitochondrial morphology. Although iron promotes the emergence of Ca2+ signals via activation of redox-sensitive Ca2+ channels, the role of Ca2+ signaling in ferroptosis has not been established. The early dysregulation of the cellular redox state observed in ferroptosis is likely to disturb Ca2+ homeostasis and signaling, facilitating ferroptotic neuronal death. This review presents an overview of the role of iron and ferroptosis in neuronal function, emphasizing the possible involvement of Ca2+ signaling in these processes. We propose, accordingly, that the iron-ferroptosis-Ca2+ association orchestrates the progression of cognitive dysfunctions and memory loss that occurs in neurodegenerative diseases. Therefore, to prevent iron dyshomeostasis and ferroptosis, we suggest the use of drugs that target the abnormal Ca2+ signaling caused by excessive iron levels as therapy for neurological disorders.


Assuntos
Ferroptose , Cálcio , Morte Celular , Ferro , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...